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Abstract: Cholera is an infectious water borne disease caused by the gram-negative bacterium Vibrio Cholerae. It 

is manifested in signs and symptoms such as severe rice-water diarrhea and vomiting. It is mainly a disease of 

countries and regions with high inequality levels, conflict and resource starved. Globally, it affects more than 2.8 

million people and kills about 95000 people annually. This thesis seeks to investigate the impact of management of 

cholera through hospitalization with a major focus on Baringo county. It has a model for mathematical 

epidemiological modelling to investigate the disease dynamics and the consequential impact of hospitalization as a 

measure to manage outbreaks. The stability of the cholera dynamics was determined analytically indicating that 

for cholera outbreaks to be managed effectively the basic reproduction should be less than one. The basic 

reproduction number was determined and analyzed analytically. The sensitivity analysis of the parameters was 

conducted with respect to their contribution to the basic reproduction number. The numerical solution was 

determined and used to draw conclusion on future trends of the disease dynamics under different prevailing 

conditions. 

Keywords: Cholera dynamics, mathematical modelling, epidemiological modelling, hospitalization modelling, 

sensitivity analysis. 

1.   INTRODUCTION 

Waterborne infections are one of the leading causes of death in the African continent. Cholera is one of the most 

prominent waterborne diseases having a great impact in the rural counties, provinces and townships of the continent. 

Cholera is caused by the gram negative bacterium Vibrio Cholerae through consumption of contaminated food or water. 

In particular, the cholera toxin (CT)-producing V. cholerae strains of O139 and O1 serogroups [5] are responsible for the 

majority of cholera outbreaks in the world. 

Some of the common symptoms of cholera include vomiting and severe rice-water like diarrhea. The diarrhea is very 

severe to extent of outputting as high as 1 L/h of diarrheal fluids. As a consequence of the cumulative impact of vomiting 

and diarrhea, patients are always at a high risk of dehydration and hypovolemic shock which often results in a high 

fatality rate if treatment is not offered in good time. 

Oral rehydration solution (ORS) is the mainstay therapy prescribed to cholera patients since it is effective in increasing 

hydration and can reduce the mortality rate from around 50% to 1%. ORS can effectively be administered in a hospital 

environment to maximize its effectiveness since it has limitations. The limitations include lack of capacity to reduce stool 

output, ineffectiveness in severe diarrhea cases, which account for about 20% of cholera cases, and lastly lack of clean 

water supply in epidemic areas. 
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Administration of antibiotics is another intervention recommended but often used in moderate and severe occasions. 

Antibiotic administration has been proven to reduce the duration of diarrhoea and stool by about 50% thus reducing the 

amount of intravenous fluid necessary for rehydration as well as reduce the period of V. Cholerae excretion to 1-2 days 

from 5 days [5]. However, the utilization of antibiotics is not a sustainable solution since the bacteria becomes more 

resistant to the antibacterials thus making it hard to treat cholera. It should be noted that the most effective environment to 

administer both treatment option is the hospital environment. 

2.   MODEL DESCRIPTION AND FORMULATION 

This project considered a compartmental model with a total population (N) to analyze the transmission dynamics of 

Cholera. The total population (N) is categorized into five compartments; the susceptible individuals (S), who are not 

colonized by cholera bacterium but are at risk of infection; the vaccinated individuals (V), who are individuals vaccinated 

against cholera. The vaccination rate is denoted by ξ while υ denotes the vaccination immunity waning rate. The 

susceptible individuals get infected at a rate of β while the vaccinated individuals get infected after their vaccine has 

waned or failed at a rate of ρ, governed by the law of mass action. The infectious compartment (I) contains people 

infected with cholera. The hospitalized individuals are contained in the Hospitalization compartment (H) while the 

recovered compartment (R) contains individuals with temporary immunity. 

The infected individuals are hospitalized at the rate α. The infected individuals recover at a rate of τ without being 

hospitalized while the hospitalized individuals recover at a rate of ω. The recovered individual’s temporary immunity 

wanes at a rate of ψ. The recruitment rate of individuals into the model is given by Λ. Lastly, the individuals under study 

die at a natural rate µ while the infected ones dies at a rate of σ. 

2.1 Model diagram 

 

 

Figure 1: The Model 
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The time evolution state of the susceptible (S), vaccinated (V), infected (I), hospitalized (H), and recovered (R) 

populations can be expressed by the following deterministic ordinary differential equations: 
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3.  POSITIVITY AND BOUNDEDNESS 

This section analyzed the positivity and boundedness of the epidemiological model to ensure that it is well posed 

mathematically [3]. We assumed that the initial conditions lie within a closed bounded set Ω thus 2.1 has a closed and 

bounded solution in ω at all time t ≥ 0 given by 

 5( , , , , ) :S V I H R S V I H R N         

The total population is given by N(t)= S(t)+V(t)+I(t)+H(t)+R(t), therefore 

( ) ( ) ( ) ( ) ( ) ( )dN t dS t dV t dI t dH t dR t
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Utilizing the equation 2.1, we get 
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which reduces to 
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which can be reduced into, 
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but N(t)= S(t)+V(t)+I(t)+H(t)+R(t). Therefore, 

( )
( ( )) ( ) ( )

dN t
N t H t

dt
           (3.1) 
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At the initial conditions there is no hospitalization thus 3.1 reduces to 

( )
( )

dN t
N t

dt
          (3.2) 

Which is a separable differential equation. As such, 
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Integrating both sides we obtain 
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Raising both sides to power e 
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taking inverses on both sides 
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simplifying, we have 
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4. THE DISEASE FREE EQUILIBRIUM 

At the equilibrium point we have no variation with time thus the dynamical system 2.1 reduces to  

0
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      (4.1) 

At the disease free equilibrium (DFE) I = 0 implying that H = 0 and R = 0. by extension V = 0 since cholera vaccination is 

given to targeted populations [2]. As such 4.1 reduces to 

0 00 S S              (4.2) 

and 

00 S           (4.3) 

Implying that ξ = 0 since S0 is not equal to 0. Applying this result to 4.2 above we get 

00 S             (4.4) 

Thus 
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Which can be written as 0 0 0 0 0( , , , , ) ,0,0,0,0S V I H R
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  
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5. BASIC REPRODUCTION NUMBER 

The next generation matrix method is used to determine the basic reproduction number R0 [7] which gives a measure of 

every secondary infection arising from primary novel infection [4]. 

0
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At DFE given by 
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and 

( ) 0

( )
V

   

   

   
  

   
       (5.6) 

The inverse V
−1 
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 The next generation matrix 
1FV 

 is given by  
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whose eigen vectors are given as 
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The most dominant eigenvalue of the next generation matrix FV
−1 

gives the basic reproduction number R0 [1]. Therefore 
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6. LOCAL STABILITY OF THE DISEASE FREE EQUILIBRIUM 

At the stable condition  0
d

dt
   that is, the system does not change with time. As such, we have 
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It follows that the jacobian matrix [8] of any dynamical system is given by 
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The jacobian matrix of 2.1 is given by 
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The jacobian evaluated at the disease free equilibrium yields 
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Whose eigen values are given by 
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For the system to be asymptotically stable all the eigenvalues should be negative. The first three eigenvalues of 6.4 are 

negative. The last eigenvalue is not strictly negative, as such the system can only be asymptotically stable under given 

conditions. For the system to be locally asymptotically stable 
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Dividing all through by (µ+τ+α+σ) we get 
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Multiplying through by -1 we get 

 
1 0



    


 

  
        (6.9) 

Therefore, we have 
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implying that following condition  

 
1



    




  
         (6.11) 



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 8, Issue 3, pp: (4-14), Month: September - December 2021, Available at: www.noveltyjournals.com 

 

Page | 12 
Novelty Journals 

 

must be met for the dynamical system to locally asymptotically stable. But from 5.10 

 0R


    




  
        (6.12) 

thefore the system is loacally asymptotically stable if and only if 

0R <1 

7. SENSITIVITY ANALYSIS 

Sensitivity analysis is done to evaluate the parametric contribution of parameters to the reproduction number. It measures 

the sensitivity of the reproduction number in response to changes in parameters and errors arising from formulation errors. 

The sensitivity analysis of a model parameter is usually determined through the relationship between the individual 

parameter and the basic reproduction number (R0). Given a variable w, its sensitivity is given by relation; 

    

0 0

0

R

w

R w
S

w R


 


          (7.1) 

The sensitivity analysis of the threshold number (Basic reproduction number R0) with respect to the individual parameters 

is given in the table below 

 

8.   NUMERICAL SOLUTIONS 

This section explores the numerical simulations of the disease spread dynamics using the Runge-Kutta order four 

numerical method. The simulations consider the spread of the disease within a period of seventy months. 

8.1 Cholera disease dynamics 

The figure 2 indicates the cholera dynamics within each compartment. Majority of the susceptible individuals are not 

infected by the disease in long run, however the number of unaffected individuals decreases significantly after the first 30 

months after an outbreak. After 30 months of the disease in the community, the over 50% of the population would have 

been in various stages of recovery after infection or exposure to cholera disease. As such, immediate intervention 

measures are necessary when cholera is detected in the community to prevent a heavy disease burden. 
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Figure 2: Counties Affected by Cholera Outbreaks 

The vaccinated population remains stable at low levels since vaccinations are given to targeted individuals who are at 

high risk of spreading the disease. At the stable state the hospitalized population accounts for the compartment with the 

lowest population with the infectious populations very high at the same state. 

8.2 Hospitalization dynamics 

One of the early interventions of cholera management are increasing the hospitalization levels. Figure 3 illustrates the 

infectious population at different hospitalization levels. 

 

Figure 3: Counties Affected by Cholera Outbreaks 

When the hospitalization levels are very high, α = 0.36144 the infectious population stabilize at very low levels thus 

accounting for very low disease burden over time. As the hospitalization decrease, the disease burden increases 

proportionately in the community as illustrated by figure 3. When the hospitalization rates are at their lowest levels α = 

0.014144 the infection rates are their highest.  
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9. CONCLUSION AND RECOMMENDATIONS 

9.1 Conclusion 

A deterministic SVIHR model for cholera transmission was developed that incorporated the hospitalization compartment 

as an interventionary measure to combat the spread of cholera. The model was analyzed analytically and the analytical 

threshold number determined. The equilibrium points were determined pointing to the fact that for effective management 

of cholera transmission the basic reproduction number should always be less than one. 

Sensitivity analysis of each parameter and its contribution towards the basic reproduction was conducted. It was found 

that the effective contact rate increased the spread of the disease in the communities. As such, interventions decreasing 

effective contact rate should be employed in the fight against cholera. In addition, the increase of the recruitment rate 

contributes to the increase of the disease thus interventions that ensure that the infectious population do not interact with 

the new recruits such as quarantining should be employed for effective management of the disease. 

9.2 Recommendation 

The cholera model can further be improved to include new compartments with new interventionary measures such as 

quarantined population. Local health officers in rural counties should hold more campaigns focused on public health and 

personal hygiene as a measure of reducing contact rate between infectious individuals together with the environment 

around them and the susceptible individuals. 

From the sensitivity analysis, both the recruitment rate and contact rate drive up the infection rates. As such, local health 

authorities should focus on providing hospitals for the infected individuals to contain the spread of cholera in the 

communities. Hospitalization is one of the key intervention measures since it isolates the sick individuals from the 

susceptible individuals effectively lowering the contact rate. Additionally, the hospital environment is a controlled 

environment that minimizes the diseases transmission to other individuals thus effectively breaking the disease dynamics 

cycle. 
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